

WEEKLY TEST TYJ MATHEMATICS SOLUTION 17 NOVEMBER 2019

- 41. (b) $a = 3 \implies \text{abscissa is } 4 3 = 1 \text{ and } y^2 = 12, y = \pm 2\sqrt{3}$. Hence points are $(1, 2\sqrt{3}), (1, -2\sqrt{3})$.
- 42. (b) Let point be (h, k). But 2h = k, then k² = 16h
 ⇒ 4h² = 16h ⇒ h = 0, h = 4 ⇒ k = 0, k = 8
 ∴ Points are (0,0), (4,8). Hence focal distances are respectively 0 + a = 4, 4 + 4 = 8. (∴ a = 4)
- 43. (c) x² = -8y ⇒ a = -2. So, focus = (0,-2) Ends of latus rectum = (4,-2), (-4,-2).
 Trick : Since the ends of latus rectum lie on parabola, so only points (-4,-2) and (4,-2) satisfy the parabola
- **44.** (c) Since the axis of parabola is *y*-axis ∴ Equation of parabola $x^2 = 4ay$ Since it passes through (6, - 3) ∴ 36 = -12a ⇒ a = -3
 - \therefore Equation of parabola is $x^2 = -12y$.
- **45.** (a) Clearly; parabola $y^2 = x$ is symmetric about *x*-axis.

- 46. (d) Clearly; $a = \left| \frac{-8}{\sqrt{1+1}} \right| \left| \frac{-12}{\sqrt{1+1}} \right| = \frac{4}{\sqrt{2}}$ Length of latus rectum $= 4a = 4 \times \frac{4}{\sqrt{2}} = 8\sqrt{2}$. 47. (a) $\Delta = (1)(1)(2) + 2\left(\frac{3}{2}\right)(0)(-1) - (1)(0)^2 - (1)\left(\frac{3}{2}\right)^2 - 2(-1)^2$ $= 2 - \frac{9}{4} - 2 < 0$ and $h^2 - ab = 1 - 1 = 0$. *i.e.*, $h^2 = ab \implies a$ parabola. 48. (a) Check the equation of parabola for the given points.
- **49.** The given equation can be written as $(x-4)^2 = y (c-16)$. Therefore the vertex of the parabola is (4, c-16). The point lies on x-axis.

 $\therefore c-16=0 \Longrightarrow c=16 \ .$

50. (b) Given equation can be written as,

$$(y+1)^2 = \frac{3}{2}(x+3)$$
. So, vertex is (-3,-1).

51. (c) The given equation of parabola is $x^2 - 4x - 8y + 12 = 0$ $\Rightarrow x^2 - 4x = 8y - 12 \Rightarrow (x - 2)^2 = 8(y - 1)$ Hence the length of latus rectum = 4a = 8.

52. (d) Equation of parabola

$$y^2 - 2y - x + 2 = 0 \implies (y - 1)^2 = (x - 1)$$

Let $y - 1 = Y$ and $x - 1 = X$
 $Y^2 = X, a = 1/4$, focus = (1/4,0)
∴ Required focus = $(\frac{1}{4} + 1, 0 + 1) = (5/4, 1)$.

53. (b) $VS = \sqrt{(2-2)^2 + (-3+1)^2} = 2$. From $(x-h)^2 = -4a(y-k)$ Parabola is, $(x-2)^2 = -4.2(y+1)$ $\Rightarrow (x-2)^2 = -8(y+1)$ $\Rightarrow x^2 + 4 - 4x = -8y - 8$ $\Rightarrow x^2 - 4x + 8y + 12 = 0.$

54. (a)
$$SP = PM \Rightarrow SP^2 = PM^2$$
 /
 $\Rightarrow x^2 + y^2 = \left(\frac{x + y - 4}{\sqrt{2}}\right)^2$
 $\Rightarrow x^2 + y^2 - 2xy + 8x + 8y - 16 = 0.$

55. (a) Given, equation of parabola is $x^2 + 8y - 2x = 7 \Rightarrow x^2 - 2x + 8y - 7 = 0$ $\Rightarrow x^2 - 2x + 1 + 8y - 7 - 1 = 0 \Rightarrow (x - 1)^2 + 8y = 8$ $\Rightarrow (x - 1)^2 = -8(y - 1) \Rightarrow (x - 1)^2 = -4.2(y - 1)$ Here, a = 2. \therefore Equation of directrix is y - 1 = 2 *i.e.*, y = 3.